Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4SC02MTC1 Subject Name: Mathematics-II

Course Name: B.Sc. (Pure) Semester:II Date: 18/5/2015 Marks:70 Time:10:30 TO 01:30

18-5

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Que.1 Attempt the following

1	Find the equation of cone having vertex $(0,0,0)$ and passing through the curve	[2]
1	$x^2 + y^2 = 4, z = 2.$	
2	Find the real and imaginary part of $\exp((5+3i)^2)$.	[2]
3	Find the magnitude and argument of $(\sqrt{3}+i)$.	[2]
4	Check the convergence of a sequence $(-1)^n$.	[2]
5	Find the order and degree of an differential equation $\left[1 + \frac{dy}{dx}\right]^5 = \sqrt{1 + \frac{d^2y}{dx^2}}$.	[2]
6	Solve $D^2 y - y = 0$.	[2]
7	Evaluate $\int_{0}^{\pi/2} \sin^7 x \cos^5 x dx.$	[2]
Que.2	Attempt the following:	
1	Find the equation of tangent plane at a point $(1,0,-1)$ on the cone	[5]
-	$2x^2 + y^2 - 2z^2 = 0.$	
2	If $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ represents one of a set of three mutually perpendicular	[5]
	generators of the cone $5yz - 8xz - 3xy = 0$, find the equations of other two.	
3	Prove that the cone $ax^2 + by^2 + cz^2 = 0$ and $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$ are reciprocal of	[4]
	each other.	

Que.3 Attempt the following:
1 Solve
$$(D^2 - 3D + 2)y = e^{-2x} + \sin 3x + 3$$
. [5]
2 Solve $y'' + y = e^x \cos 2x$. [5]
3 Solve $(D^3 - D^3 - D + 1)y = 1$. [4]
Que.4 Attempt the following:
1 Solve $(x^2D^2 - 3xD + 4)y = x^2$. [5]
2 Solve $x^2y'' - xy' + y = \log x$. [5]
3 Solve $(x - 3)^2 \frac{d^3y}{dx^2} + 3(x - 3)\frac{dy}{dx} - 8y = 0$. [4]
3 Solve $(x - 3)^2 \frac{d^3y}{dx^2} + 3(x - 3)\frac{dy}{dx} - 8y = 0$. [5]
3 Solve $(x - 3)^2 \frac{d^3y}{dx^2} + 3(x - 3)\frac{dy}{dx} - 8y = 0$. [5]
3 Find all the values of $(1 + i)^{1/3}$. [4]
Que.5 Attempt the following:
1 State and prove the D'Moivre's theorem. [5]
2 Express $\cos 60$ in terms $\cos \theta$. [5]
3 Find all the values of $(1 + i)^{1/3}$. [4]
Que.6 Attempt the following:
If $x + iy = \cosh(u + iv)$, prove that (a) $\frac{x^2}{\cosh^2 u} + \frac{y^2}{\sinh^2 u} = 1$ (b) [5]
1 $\frac{x^2}{\cos^2 v} - \frac{y^2}{\sin^2 v} = 1$. [5]
2 Prove that $(\sqrt{i})^{1/5} = e^{-\alpha} cis(\alpha)$ where $\alpha = \frac{\pi}{4\sqrt{2}}$. [5]
3 Prove the following results: [4]
(a) $[\sin(\alpha + \theta) - e^{ix} \sin \theta] = e^{-in\theta} \sin \alpha$. (b) $\sin(\alpha - n\theta) + e^{ix} \sin n\theta = e^{-in\theta} \sin \alpha$. [5]
2 Check the convergence of the following sequences: [5]
(a) $\left\{\frac{1}{2^n} + \frac{1}{3^{2n}}\right\}$ (b) $\left\{\frac{n^2 + 3n + 5}{2n^2 + 5n + 7}\right\}$.
3 Derive reduction formula for $\int \cos^n x dx$. [4]
Que.8 Attempt the following
1 Evaluate $\int \sin^4 x dx$. [5]
2 Evaluate $\int \sin^4 x dx$. [5]
3 Evaluate $\int \sin^4 x dx$. [4]

